
A Fast Rescheduling Algorithm for Real-Time Multi-Robot Coordination
[Extended Abstract]

Adittyo Paul*, Ying Feng*, Jiaoyang Li
Carnegie Mellon University

{adittyop, yingfeng}@andrew.cmu.edu, jiaoyangli@cmu.edu

Introduction
Multi-Agent Path Finding (MAPF) is an optimization prob-
lem of finding collision-free paths for a team of given agents
A on a given graph with the minimum sum of travel times.
Each agent i ∈ A has a start and a goal location and per-
forms a move or a wait action at each discrete timestep. A
path for an agent is a series of locations indicating the posi-
tion where the agent should be at every timestep. Two agents
collide when they are at the same location or swapping their
locations at the same timestep. The applications of MAPF
are vast, including intralogistics, train scheduling, aircraft
towing, and video games. In practice, however, it is not al-
ways possible for agents to tightly follow the planned paths
as delays may occur due to various issues, including external
disturbance and hardware failures. Hönig et al. (2016) thus
proposed a TPG execution framework to address this issue.

Definition 1 (TPG). A Temporal Plan Graph (TPG) (Hönig
et al. 2016) is a directed graph G = (V, E) that represents the
precedence relationships of a given MAPF solution. A ver-
tex vin corresponds to the nth location in the path of agent i.
An edge (vin, v

i′

n′) indicates that agent i′ can move to vertex
vi

′

n′ only after agent i has visited vertex vin. Edges are cate-
gorized into two types. Type 1 edges connect vertices of the
same agent and are of format (vin, v

i
n+1),∀n, i. Type 2 edges

connect vertices of different agents, ensuring that the order
in which agents visit the same location does not change. We
thus add a Type 2 edge (vin, v

i′

n′) iff agent i visits a certain
location before agent i′.

During execution, instead of asking the agents to follow
the MAPF solution precisely in time, we ask them to follow
the TPG, i.e., we move an agent to its next vertex vin+1 only
if all vertices vi

′

n′ : (vi
′

n′ , vin+1) ∈ E has been visited. This
ensures the success of the execution, i.e., no deadlocks and
no collisions (Hönig et al. 2016). However, it often causes
unnecessary waiting (Berndt et al. 2020) since, after a delay
happens, changing the ordering of the agents at some loca-
tions may lead to better solutions. Motivated by the scenario
when it is desirable to keep the agents to their pre-planned
paths but modify the precedence dependencies at specific

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: Switchable-Edge Search (SES)
Input: Switchable TPG G and start vertices S
Output: Optimal non-switchable TPG

1 R← Node(G, S);
2 R.g ← 0;
3 R.h← COMPUTEHEURISTIC(R);
4 OPEN ← {R}
5 while OPEN is not empty do
6 N ← OPEN.pop()
7 ∆g ← 0; V ← N.V ;
8 while true do
9 if ∃vici ∈ V with switchable edge (vici , v

j
n) ∈ N.G

then
10 F ← Node(N.G, V); B ← Node(N.G, V);
11 Set (vici , v

j
n) non-switchable in F.G and B.G;

12 Reverse the direction of (vici , v
j
n) in B.G;

13 for N ′ ∈ {F,B} do
14 if N ′.G− has cycles then continue;
15 N ′.g,← N.g +∆g;
16 N ′.h← COMPUTEHEURISTIC(N ′);
17 OPEN ← OPEN ∪ {N ′};
18 break;

19 V ′ ← STEPAGENTS(N.G, V);
20 if V ′ = {vi−1 : i ∈ A} then return N.G;
21 if V ′ = V then break;
22 ∆g ← ∆g + |{vici ∈ V : vici ̸= vi−1}|; V ← V ′;

23 throw exception “No solution found”;

locations on the fly, we develop an optimal A*-based al-
gorithm, called Switchable-Edge Search, to re-optimize the
TPG in real-time when delays happen.

Switchable-Edge Search
Reversing the directions of Type 2 edges of a TPG allows
us to change the ordering for the agents to visit the same
location. Therefore, when a delay occurs, we search for the
set of modifications to the TPG that results in the optimal
ordering given the delay. Inspired by previous work (Berndt
et al. 2020), we introduce switchable TPG.
Definition 2 (Switchable TPG). A Switchable TPG is a
TPG such that a Type 2 edge (vin, v

i′

n′) is marked switchable

iff neither agent i nor agent i′ has visited vertices vin or vi
′

n′ .
Such edges are considered valid to reverse, which implies
swapping the visit order of agent i and i′ to the location.

Given a switchable TPG, we aim to determine the di-
rection of each switchable edge by Switchable-Edge Search
(SES); see Algorithm 1. SES performs an A* search and out-
puts an optimal TPG that minimizes the sum of the travel
times of all agents (assuming no delays occur in the future).

Node Each node N in SES contains a switchable TPG N.G
and a set of the current (TPG) vertices of all agents N.V =
{vici : i ∈ A}. We use N.G− to denote the subgraph of N.G
that ignores all switchable edges. The root node R contains
the initial switchable TPG formed from the MAPF solution
with all agents at their start vertices, i.e., the vertices that
agents are occupying when SES is called (Line 1). A node
is a goal node iff every agent i is at its last vertex vi−1. The
g-value of node N is the sum of timesteps that has moved
all agents from their start vertices to N.V , and its admissible
h-value is the minimum sum of timesteps required to move
all agents from N.V to their target vertices following N.G−.

Node Expansion We develop a simulator STEPAGENTS
(Line 19) that moves all agents forward by one timestep
following N.G and returns the new locations of the agents.
When expanding a node N , we repeatedly run STEPAGENTS
(Lines 8 to 22) until (1) all agents reach their last vertices, in
which case we find an optimal TPG (Line 20), (2) no agents
make progress, in which case we prune node N (Line 21),
or (3) we encounter an unspecified precedence dependency
(Lines 9 to 18), i.e., the current vertex of an agent is inci-
dent to a switchable edge, in which case we consider both
possible directions of the edge by spawning two copies of
the TPG: one fixes the edge as non-switchable, and the other
reverses the direction of the edge and then fixes it as non-
switchable. The two TPG copies, along with the current lo-
cations of the agents, are interpreted as two new nodes and
added to the open list if no cycles exist.

Cycle Detection Once we fix the direction of a switchable
edge e, it can lead to a deadlock, i.e., form a directed cycle
in the TPG with other non-switchable edges. Although dead-
locks can be detected when we compute heuristics since we
simulate future movements and will observe that no agent
moves yet some of them have not reached their last ver-
tices. However, this process is time-consuming. We thus add
a deadlock-detection mechanism to efficiently identify the
deadlock TPG before computing the heuristic. Since the di-
rected cycle, if it exists, must contain edge e, we run a depth-
first search from the source vertex of e to detect it.

Heuristic Calculation A naı̈ve way of computing the h-
value of node N is to repeatedly run simulator STEPAGENTS
to move all agents from N.V to their last vertices following
N.G−. Since N.G− contains only non-switchable edges, we
can replace this time-consuming simulation-based method
with a search-based method. Given that N.G− is acyclic (be-
cause, otherwise, it leads to a deadlock, and the h-value is
set to infinity), it is easy to prove that the minimum timestep
required for agent i to reach its target vertex is the longest

Figure 1: Left figure shows average runtimes (indicated by
lines) with standard error (indicated by vertical bars) over 25
trials on a 32× 32 random map with a time limit of 90 sec-
onds. Right figure shows runtime breakdown for 50 agents.

path from the current vertex of any agent to the last vertex of
agent i. We can find such longest paths for all agents in poly-
nomial time by topological sort. Therefore, the simulation-
based method and the search-based method always find the
same admissible h-value.

Experiments
We implement in C++ three versions of our proposed al-
gorithms: SES-B(asic), which uses the simulation-based
heuristic without cycle detection, SES-C(ycleDetection),
which uses the simulation-based heuristic with cycle detec-
tion, and SES, which uses the search-based heuristic with
cycle detection. We assume that an agent can successfully
move to a new location with a probability of 97% and, oth-
erwise, gets delayed for 20 timesteps at its current loca-
tion. Figure 1 plots the runtimes of the algorithms after the
first delay happens, which are measured on a General Pur-
pose Linux Computer running Ubuntu 18.04 LTS with 4 In-
tel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz processors. As
shown, cycle detection has negligible runtime overhead. The
runtime of the heuristic computation can be significantly
sped up with cycle detection and the search-based method.
Thus, SES runs the fastest and solves MAPF instances with
50 agents with an average runtime of only 5.92 seconds. Re-
garding solution quality, the sum of travel times of the agents
using SES, for example, for 50 agents, is 14% better on av-
erage than that of the original TPG.

Acknowledgments
This research is supported by the CMU Manufacturing Fu-
tures Institute, made possible by the Richard King Mellon
Foundation.

References
Berndt, A.; Duijkeren, N. V.; Palmieri, L.; and Keviczky, T.
2020. A Feedback Scheme to Reorder a Multi-Agent Execu-
tion Schedule by Persistently Optimizing a Switchable Ac-
tion Dependency Graph. In ICAPS Workshop on Distributed
and Multi-Agent Planning, 1–9.
Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In International Conference on
Automated Planning and Scheduling, 477–485.

