
Multi-Agent Path Finding with Deadlines: Preliminary Results∗
Extended Abstract

Hang Ma∗
USC

hangma@usc.edu

Glenn Wagner
CSIRO

Ariel Felner
Ben-Gurion University

Jiaoyang Li∗
T. K. Satish Kumar∗

Sven Koenig∗

ABSTRACT
We formalize the problem of multi-agent path finding with dead-
lines (MAPF-DL). The objective is to maximize the number of
agents that can reach their given goal vertices from their given
start vertices within a given deadline, without colliding with each
other. We first show that the MAPF-DL problem is NP-hard to solve
optimally. We then present an optimal MAPF-DL algorithm based
on a reduction of the MAPF-DL problem to a flow problem and a
subsequent compact integer linear programming formulation of
the resulting reduced abstracted multi-commodity flow network.

ACM Reference Format:
Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, T. K. Satish Kumar,
and Sven Koenig. 2018. Multi-Agent Path Finding with Deadlines: Prelimi-
nary Results. In Proc. of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July
10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Multi-agent path finding (MAPF) is the problem of planning
collision-free paths for multiple agents in known environments
from their given start vertices to their given goal vertices. MAPF is
important, for example, for aircraft-towing vehicles [20], warehouse
and office robots [30, 34], and game characters [19]. The objective
is to minimize the sum of the arrival times of the agents or the
makespan. The MAPF problem is NP-hard to solve optimally
[36] and even to approximate within a small constant factor for
makespan minimization [18]. It can be solved with reductions
to other well-studied combinatorial problems [5, 21, 28, 35] and
dedicated optimal [2, 6, 8, 22, 23, 25, 26, 32], bounded-suboptimal
[1, 3], and suboptimal MAPF algorithms [4, 12, 24, 27, 31, 33], as
described in several surveys [7, 15].

The MAPF problem has recently been generalized in different
directions [9, 10, 13–17] but none of them capture an important
characteristic of many applications, namely the ability to meet
deadlines. We thus formalize the multi-agent path finding problem
with deadlines (MAPF-DL problem). The objective is to maximize
the number of agents that can reach their given goal vertices from
their given start vertices within a given deadline, without colliding
with each other. In previously studied MAPF problems, all agents
have to be routed from their start vertices to their goal vertices,

∗Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig are affiliated with the
University of Southern California (USC). The research at USC was supported by the
National Science Foundation (NSF) under grant numbers 1724392, 1409987, and 1319966
as well as a gift from Amazon.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and the objective is with regard to resources such as fuel (sum of
arrival times) or time (makespan). In the MAPF-DL problem, on the
other hand, the resources are the agents themselves. We first show
that the MAPF-DL problem is NP-hard to solve optimally. We then
present an optimal MAPF-DL algorithm based on a reduction of the
MAPF-DL problem to a flow problem and a subsequent compact
integer linear programming formulation of the resulting reduced
abstracted multi-commodity flow network.

2 MAPF-DL PROBLEM
We formalize the MAPF-DL problem as follows: We are given a
deadline, denoted by a time step Tend , an undirected graph G =
(V ,E), andM agents a1,a2 . . . aM . Each agent ai has a start vertex
si and a goal vertex дi . In each time step, each agent either moves
to an adjacent vertex or stays at the same vertex. Let li (t) be the
vertex occupied by agent ai at time step t ∈ {0 . . .Tend }. Call an
agent ai successful iff it occupies its goal vertex at the deadlineTend ,
that is, li (Tend) = дi . A plan consists of a path li assigned to each
successful agent ai . Unsuccessful agents are removed at time step
zero and thus have no paths assigned to them.1 A solution is a plan
that satisfies the following conditions: (1) For all successful agents
ai , li (0) = si [each successful agent starts at its start vertex]. (2) For
all successful agents ai and all time steps t > 0, (li (t − 1), li (t)) ∈ E
or li (t − 1) = li (t) [each successful agent always either moves to
an adjacent vertex or does not move]. (3) For all pairs of different
successful agents ai and aj and all time steps t , li (t) , lj (t) [two
successful agents never occupy the same vertex simultaneously].
(4) For all pairs of different successful agents ai and aj and all time
steps t > 0, li (t −1) , lj (t) or lj (t −1) , li (t) [two successful agents
never traverse the same edge simultaneously in opposite directions].
Define a collision between two different successful agents ai and
aj to be either a vertex collision (ai , aj , v , t) iff v = li (t) = lj (t)
(corresponding to Condition 3) or an edge collision (ai , aj , u, v , t)
iff u = li (t) = lj (t + 1) and v = lj (t) = li (t + 1) (corresponding to
Condition 4). The objective is to maximize the number of successful
agentsMsucc = |{ai |li (Tend) = дi }|.
Theorem 1. It is NP-hard to compute a MAPF-DL solution with the
maximum number of successful agents.

The proof of the theorem reduces the ≤3,=3-SAT problem [29],
an NP-complete version of the Boolean satisfiability problem, to
the MAPF-DL problem. The reduction is similar to the one used for
proving the NP-hardness of approximating the optimal makespan
for the MAPF problem [18]. It constructs a MAPF-DL instance with

1Depending on the application, the unsuccessful agents can be removed at time step
zero, wait at their start vertices, or move out of the way of the successful agents. We
choose the first option in this paper. If the unsuccessful agents are not removed, they
can obstruct other agents. However, our proof of NP-hardness does not depend on this
assumption, and our MAPF-DL algorithm can be adapted to other assumptions.

v1 v2 v4 v5

v3

s2s1 g2 g1

(a)
ut+1

in

vt
out

ut
out

vt+1
in

w W’

vt+1
out

ut+1
out

(b)

0 out

1 in

1 out

2 in

2 out

s1
g1

v1

s2

v2 v3 v4 v5

g2

(c)

Figure 1: (a) Running example of aMAPF-DL instance. (b) Construction for edge (u, v) ∈ E
between time steps t and t + 1. (c) Flow network for the running example.

0

1

2

s1 g1

v1

s2

v2 v3 v4 v5
g2

0

1

2

s1 g1

v1

s2

v2 v3 v4 v5
g2

Figure 2: Optimization for the running example. Left: Abstracted flow network. Right:
Reduced abstracted flow network.

deadlineTend = 3 that has a solution where all agents are successful
iff the given ≤3,=3-SAT instance is satisfiable.

3 OPTIMAL MAPF-DL ALGORITHM
Our optimal MAPF-DL algorithm first reduces the MAPF-DL
problem to the maximum (integer) multi-commodity flow problem,
which is similar to the reductions of the MAPF and TAPF problems
to multi-commodity flow problems [14, 35]: Given a MAPF-DL
instance with deadline Tend , we construct a multi-commodity
flow network N = (V, E) with vertices V =

⋃
v ∈V ({v

out
0 } ∪⋃Tend

t=1 {vint ,v
out
t }) and directed edges E with unit capacity. The

vertices voutt represent vertex v ∈ V at the end of time step t

and the beginning of time step t + 1, while the vertices vint are
intermediate vertices. For each agent ai , we set a supply of one at
(start) vertex (si)out0 and a demand of one at (goal) vertex (дi)outTend

,
both for commodity type i (corresponding to agent ai). For each
time step, we construct the gadgets shown in Figure 1(b) to prevent
vertex and edge collisions. The objective is to maximize the total
amount of integral flow received in all vertices (дi)outTend

, which
can be achieved via a standard integer linear programming (ILP)
formulation.
Theorem 2. There is a one-to-one correspondence between all solu-
tions of a MAPF-DL instance with the maximum number of successful
agents and all maximum integral flows on the corresponding flow
network.

The proof of the theorem is similar to the one for the reduction
of the MAPF problem to the multi-commodity flow problem [35].

Figure 1(a) shows a MAPF-DL instance with deadline Tend = 2.
Agents a1 and a2 have start vertices s1 and s2 and goal vertices д1
and д2, respectively. The number of successful agents is at most
Msucc = 1 because only agent a2 can reach its goal vertex in two
time steps. Figure 1(c) shows the corresponding flow network with
a maximum flow (in color) that corresponds to a solution with
unsuccessful agent a1 and successful agent a2 with path ⟨v2, v4,
v4⟩.

Abstracted Flow Network and Compact ILP FormulationWe
construct a compact ILP formulation based on an abstraction of
the flow network N = (V, E) and additional linear constraints to
prevent vertex and edge collisions. We obtain the abstracted flow
network N ′ = (V ′, E ′) by (1) contracting each (vint ,v

out
t) ∈ E

and replacing vint and voutt with a single vertex vt for all v ∈ V
and t = 1 . . .Tend (and vout0 with v0); and (2) replacing the gadget
for each (u,v) ∈ E and each t = 0 . . .Tend − 1 with a pair of edges
(ut ,vt+1) and (vt ,ut+1). Figure 2 (left) shows an example. Then,
we use the standard ILP formulation of this abstracted network
augmented with the constraints shown in red:

maximizeMsucc =
∑

i=1. . .M

∑
e∈δ−((si)0)

xi [e], subject to

0 ≤

M∑
i=1

xi [e] ≤ 1 e ∈ E′ (subsumed by the top red constraints)∑
e∈δ+(v)

xi [e] −
∑

e∈δ−(v)

xi [e] = 0 i = 1 . . .M, v ∈ V′ \ {(si)0, (дi)Tend }∑
e∈δ−((si)0)

xi [e] =
∑

e∈δ+((дi)Tend
)

xi [e] i = 1 . . .M

∑
i=1. . .M

∑
e∈δ−(v)

xi [e] ≤ 1 v ∈ V′

∑
i=1. . .M

xi [(ut , vt+1)] +
∑

i=1. . .M
xi [(vt , ut+1)] ≤ 1 (ut , vt+1), (vt , ut+1) ∈ E′,

where the 0/1 variable xi [e] represents the amount of flow of
commodity type i on edge e ∈ E ′ and the sets δ−(v) and δ+(v)
contain all outgoing and incoming, respectively, edges of vertex
v . The top red constraints prevent vertex collisions of the form
(∗, ∗,v, t), and the bottom red constraints prevent edge collisions
of the forms (∗, ∗,u,v, t) and (∗, ∗,v,u, t).
Reduced Abstracted Flow Network We can remove all vertices
and edges from the abstracted flow network that are not on some
path from at least one start vertex to the corresponding goal vertex
in the abstracted flow network. This can be done by performing
one complete forward breadth-first search from each start vertex
and one complete backward breadth-first search from each goal
vertex and then keeping only those vertices and edges that are part
of the search trees associated with at least one start vertex and
the corresponding goal vertex. Figure 2 (right) shows an example.
We then use the compact ILP formulation of the resulting reduced
abstracted flow network.
Experimental Evaluation We tested our optimal MAPF-DL
algorithm on a 2.50 GHz Intel Core i5-2450M laptop with 6 GB RAM,
using CPLEX V12.7.1 [11] as the ILP solver. We randomly generated
MAPF-DL instances with different numbers of agents (ranging
from 10 to 100 in increments of 10) on 40 × 40 4-neighbor 2D grids
with deadline Tend = 50. We blocked all grid cells independently
at random with 20% probability each. We generated 50 MAPF-
DL instances for each number of agents. We placed the start and
goal vertices of each agent randomly at distance 48, 49, or 50. The
following table shows the percentage of instances that could be
solved within a runtime limit of 60 seconds per instance.

agents 10 20 30 40 50 60 70 80 90 100
success rate 100% 100% 100% 100% 98% 88% 50% 12% 0% 0%

REFERENCES
[1] M. Barer, G. Sharon, R. Stern, and A. Felner. 2014. Suboptimal Variants of the

Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem. In
SoCS. 19–27.

[2] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and S. E.
Shimony. 2015. ICBS: Improved Conflict-Based Search Algorithm for Multi-
Agent Pathfinding. In IJCAI. 740–746.

[3] L. Cohen, T. Uras, T. K. S. Kumar, H. Xu, N. Ayanian, and S. Koenig. 2016. Improved
Solvers for Bounded-Suboptimal Multi-Agent Path Finding. In IJCAI. 3067–3074.

[4] B. deWilde, A.W. ter Mors, and C.Witteveen. 2013. Push and Rotate: Cooperative
Multi-Agent Path Planning. In AAMAS. 87–94.

[5] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller. 2013. A General Formal
Framework for Pathfinding Problems with Multiple Agents. In AAAI. 290–296.

[6] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. K. S. Kumar, and S. Koenig. 2018.
Adding Heuristics to Conflict-Based Search for Multi-Agent Path Finding. ICAPS
(2018).

[7] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N. R.
Sturtevant, G. Wagner, and P. Surynek. 2017. Search-Based Optimal Solvers for
the Multi-Agent Pathfinding Problem: Summary and Challenges. In SoCS. 29–37.

[8] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. R. Sturtevant, R. C. Holte, and J.
Schaeffer. 2014. Enhanced Partial Expansion A*. Journal of Artificial Intelligence
Research 50 (2014), 141–187.

[9] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and S. Koenig.
2016. Multi-Agent Path Finding with Kinematic Constraints. In ICAPS. 477–485.

[10] W. Hönig, T. K. S. Kumar, H. Ma, N. Ayanian, and S. Koenig. 2016. Formation
Change for Robot Groups in Occluded Environments. In IROS. 4836–4842.

[11] IBM. 2011. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual.
[12] R. Luna and K. E. Bekris. 2011. Push and Swap: Fast Cooperative Path-Finding

with Completeness Guarantees. In IJCAI. 294–300.
[13] H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S.

Koenig. 2017. Overview: A Hierarchical Framework for Plan Generation and
Execution in Multi-Robot Systems. IEEE Intelligent Systems 32, 6 (2017), 6–12.

[14] H. Ma and S. Koenig. 2016. Optimal Target Assignment and Path Finding for
Teams of Agents. In AAMAS. 1144–1152.

[15] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. K. S. Kumar, T. Uras, H.
Xu, C. Tovey, and G. Sharon. 2016. Overview: Generalizations of Multi-Agent
Path Finding to Real-World Scenarios. In IJCAI-16 Workshop on Multi-Agent Path
Finding.

[16] H. Ma, T. K. S. Kumar, and S. Koenig. 2017. Multi-Agent Path Finding with Delay
Probabilities. In AAAI. 3605–3612.

[17] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig. 2017. Lifelong Multi-Agent Path
Finding for Online Pickup and Delivery Tasks. In AAMAS. 837–845.

[18] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. 2016. Multi-Agent
Path Finding with Payload Transfers and the Package-Exchange Robot-Routing
Problem. In AAAI. 3166–3173.

[19] H. Ma, J. Yang, L. Cohen, T. K. S. Kumar, and S. Koenig. 2017. Feasibility Study:
Moving Non-Homogeneous Teams in Congested Video Game Environments. In
AIIDE. 270–272.

[20] R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, S. Kumar, and S. Koenig.
2016. Planning, Scheduling and Monitoring for Airport Surface Operations. In
AAAI-16 Workshop on Planning for Hybrid Systems.

[21] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh. 2017. Generalized
Target Assignment and Path Finding Using Answer Set Programming. In IJCAI.
1216–1223.

[22] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. 2015. Conflict-Based Search
for Optimal Multi-Agent Pathfinding. Artificial Intelligence 219 (2015), 40–66.

[23] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. 2013. The Increasing Cost Tree
Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 195 (2013),
470–495.

[24] D. Silver. 2005. Cooperative Pathfinding. In AIIDE. 117–122.
[25] T. S. Standley. 2010. Finding Optimal Solutions to Cooperative Pathfinding

Problems. In AAAI. 173–178.
[26] T. S. Standley and R. E. Korf. 2011. Complete Algorithms for Cooperative

Pathfinding Problems. In IJCAI. 668–673.
[27] N. R. Sturtevant and M. Buro. 2006. Improving Collaborative Pathfinding Using

Map Abstraction. In AIIDE. 80–85.
[28] P. Surynek. 2015. Reduced Time-Expansion Graphs and Goal Decomposition for

Solving Cooperative Path Finding Sub-Optimally. In IJCAI. 1916–1922.
[29] C. A. Tovey. 1984. A Simplified NP-Complete Satisfiability Problem. Discrete

Applied Mathematics 8 (1984), 85–90.
[30] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. 2015. CoBots: Robust Symbiotic

Autonomous Mobile Service Robots. In IJCAI. 4423–4429.
[31] G. Wagner and H. Choset. 2011. M*: A Complete Multirobot Path Planning

Algorithm with Performance Bounds. In IROS. 3260–3267.
[32] G. Wagner and H. Choset. 2015. Subdimensional Expansion for Multirobot Path

Planning. Artificial Intelligence 219 (2015), 1–24.
[33] K. Wang and A. Botea. 2011. MAPP: A Scalable Multi-Agent Path Planning

Algorithm with Tractability and Completeness Guarantees. Journal of Artificial
Intelligence Research 42 (2011), 55–90.

[34] P. R. Wurman, R. D’Andrea, and M. Mountz. 2008. Coordinating Hundreds of
Cooperative, Autonomous Vehicles in Warehouses. AI Magazine 29, 1 (2008),
9–20.

[35] J. Yu and S. M. LaValle. 2013. Planning Optimal Paths for Multiple Robots on
Graphs. In ICRA. 3612–3617.

[36] J. Yu and S. M. LaValle. 2013. Structure and Intractability of Optimal Multi-Robot
Path Planning on Graphs. In AAAI. 1444–1449.

	Abstract
	1 Introduction
	2 MAPF-DL Problem
	3 Optimal MAPF-DL Algorithm
	References

