
Lifelong Multi-Agent Path Finding
for Online Pickup and Delivery Tasks∗

Hang Ma
University of Southern California

hangma@usc.edu

Jiaoyang Li
Tsinghua University

lijiaoyang13@mails.tsinghua.edu.cn
T. K. Satish Kumar

University of Southern California
tkskwork@gmail.com

Sven Koenig
University of Southern California

skoenig@usc.edu

ABSTRACT
The multi-agent path-finding (MAPF) problem has recently
received a lot of attention. However, it does not capture
important characteristics of many real-world domains, such
as automated warehouses, where agents are constantly
engaged with new tasks. In this paper, we therefore study
a lifelong version of the MAPF problem, called the multi-
agent pickup and delivery (MAPD) problem. In the MAPD
problem, agents have to attend to a stream of delivery tasks
in an online setting. One agent has to be assigned to each
delivery task. This agent has to first move to a given pickup
location and then to a given delivery location while avoiding
collisions with other agents. We present two decoupled
MAPD algorithms, Token Passing (TP) and Token Passing
with Task Swaps (TPTS). Theoretically, we show that they
solve all well-formed MAPD instances, a realistic subclass
of MAPD instances. Experimentally, we compare them
against a centralized strawman MAPD algorithm without
this guarantee in a simulated warehouse system. TP can
easily be extended to a fully distributed MAPD algorithm
and is the best choice when real-time computation is of pri-
mary concern since it remains efficient for MAPD instances
with hundreds of agents and tasks. TPTS requires limited
communication among agents and balances well between TP
and the centralized MAPD algorithm.

Keywords
agent coordination; multi-agent path finding; path planning;
pickup and delivery tasks; task assignment

1. INTRODUCTION
Many real-world applications of multi-agent systems re-

quire agents to operate in known common environments.

∗Our research was supported by NSF under grant numbers
1409987 and 1319966. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies or the U.S.
government.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

The agents are constantly engaged with new tasks and have
to navigate between locations where the tasks need to be
executed. Examples include aircraft-towing vehicles [18],
warehouse robots [31], office robots [28], and game charac-
ters in video games [21]. In the near future, for instance,
aircraft-towing vehicles might navigate autonomously to
aircraft and tow them from the runways to their gates so
as to reduce pollution, energy consumption, congestion, and
human workload. Today, warehouse robots already navigate
autonomously to inventory pods and move them from their
storage locations to packing stations.

Past research efforts have concentrated mostly on a
“one-shot” version of this problem, called the multi-agent
path-finding (MAPF) problem, which has been studied in
artificial intelligence, robotics, and operations research. In
the MAPF problem, each agent has to move from its current
location to its destination while avoiding collisions with
other agents in a known common environment. The number
of agents is the same as the number of destinations, and the
MAPF task ends once all agents reach their destinations.
Therefore, the MAPF problem does not capture important
characteristics of many real-world domains, such as auto-
mated warehouses, where agents are constantly engaged
with new tasks.

In this paper, we therefore study a “lifelong” version
of the MAPF problem, called the multi-agent pickup and
delivery (MAPD) problem. In the MAPD problem, agents
have to attend to a stream of delivery tasks in a known
common environment that is modeled as an undirected
graph. Tasks can enter the system at any time and are
modeled as exogenous events that are characterized by a
pickup location and a delivery location each. An agent that
is currently not executing any task can be assigned to an
unexecuted task. In order to execute the task, the agent
has to first move from its current location to the pickup
location and then to the delivery location of the task while
avoiding collisions with other agents. We first formalize the
MAPD problem and then present two decoupled MAPD
algorithms, Token Passing (TP) and Token Passing with
Task Swaps (TPTS), both of which are based on existing
MAPF algorithms. Theoretically, we show that they solve
all well-formed MAPD instances [2], a realistic subclass
of MAPD instances. Experimentally, we compare them
against a centralized strawman MAPD algorithm without
this guarantee in a simulated warehouse system.



2. BACKGROUND AND RELATED WORK
The MAPD problem requires both the assignment of

agents to tasks in an online and lifelong setting and the
planning of collision-free paths. In a lifelong setting, agents
have to attend to a stream of tasks. Therefore, agents
cannot rest in their destinations after they finish executing
tasks. In an online setting, tasks can enter the system at
any time. Therefore, assigning agents to tasks and path
planning cannot be done in advance but rather need to be
done during execution in real-time.

The decentralized assignment of agents to more than one
task each has been studied before in isolation [26, 33, 17].
The decentralized planning of collision-free paths has also
been studied before in isolation, including with reactive
approaches [27] and prioritized approaches [6], but these ap-
proaches can result in deadlocks. The planning of collision-
free paths has also been studied in the context of the MAPF
problem, which is a one-shot (as opposed to a lifelong)
version of the MAPD problem. It is NP-hard to solve
optimally for minimizing flowtime (the sum of the number of
timesteps required by all agents to reach their destinations
and stop moving) and NP-hard to approximate within any
constant factor less than 4/3 for minimizing makespan (the
timestep when all agents have reached their destinations and
stop moving) [16]. It can be solved via reductions to Boolean
Satisfiability [25], Integer Linear Programming [32], and
Answer Set Programming [5]. Optimal dedicated MAPF
algorithms include Independence Detection with Operator
Decomposition [22], Enhanced Partial Expansion A* [7],
Increasing Cost Tree Search [20], M* [29], and Conflict-
Based Search [19, 1, 3]. Suboptimal dedicated MAPF algo-
rithms include Windowed-Hierarchical Cooperative A* [21,
23], Push and Swap/Rotate [12, 4], TASS [10], BIBOX [24],
and MAPP [30]. The MAPF problem has recently been
generalized to more clearly resemble real-world settings [8,
14, 9, 15, 13] but these versions are still one-shot.

3. PROBLEM DEFINITION
In this section, we first formalize the MAPD problem and

then define well-formed MAPD instances.

3.1 MAPD Problem
An instance of the MAPD problem consists of m agents

A = {a1, a2 . . . am} and an undirected connected graph G =
(V,E) whose vertices V correspond to locations and whose
edges E correspond to connections between locations that
the agents can move along. Let li(t) ∈ V denote the location
of agent ai in discrete timestep t. Agent ai starts in its
initial location li(0). In each timestep t, the agent either
stays in its current location li(t) or moves to an adjacent
location, that is, li(t + 1) = li(t) or (li(t), li(t + 1)) ∈ E.
Agents need to avoid collisions with each other: (1) Two
agents cannot be in the same location in the same timestep,
that is, for all agents ai and ai′ with ai 6= ai′ and timesteps
t: li(t) 6= li′(t); and (2) two agents cannot move along the
same edge in opposite directions in the same timestep, that
is, for all agents ai and ai′ with ai 6= ai′ and all timesteps t:
li(t) 6= li′(t+ 1) or li′(t) 6= li(t+ 1). A path is a sequence of
locations with associated timesteps, that is, a mapping from
an interval of timesteps to locations. Two paths collide iff
the two agents that move along them collide.

Consider a task set T that contains the set of unexecuted
tasks. In each timestep, the system adds all new tasks

s1 a1 a2 g1

Figure 1: The figure shows a MAPD instance with
two free agents a1 and a2 and one task τ1 with pickup
location s1 and delivery location g1.

to the task set. Each task τj ∈ T is characterized by a
pickup location sj ∈ V and a delivery location gj ∈ V . An
agent is called free iff it is currently not executing any task.
Otherwise, it is called occupied. A free agent can be assigned
to any task τj ∈ T . It then has to move from its current
location via the pickup location sj of the task to the delivery
location gj of the task. (Any agent that had been assigned
to this task previously no longer has this obligation.) When
the agent reaches the pickup location, it starts to execute
the task and the task is removed from T . When it reaches
the delivery location, it finishes executing the task, which
implies that it becomes free again and is no longer assigned
to the task. Note that any free agent can be assigned to
any task in the task set. An agent can be assigned to a
different task in the task set while it is still moving to the
pickup location of the task it is currently assigned to but
it has first to finish executing the task after it has reached
its pickup location. These properties model delivery tasks,
where agents can often be re-tasked before they have picked
up a good but have to deliver it afterward.

The objective is to finish executing each task as quickly
as possible. Consequently, the effectiveness of a MAPD
algorithm is evaluated by the average number of timesteps,
called service time, needed to finish executing each task after
it was added to the task set. A MAPD algorithm solves a
MAPD instance iff the resulting service time of all tasks is
bounded.

3.2 Well-Formed MAPD Instances
Not every MAPD instance is solvable. Figure 1 shows

an example with two free agents a1 and a2 where neither
agent can finish executing task τ1 with pickup location
s1 and delivery location g1. We now provide a sufficient
condition that makes MAPD instances solvable, namely
being well-formed [2]. The intuition is that agents should
only be allowed to rest (that is, stay forever) in locations,
called endpoints, where they cannot block other agents.
For example, office workspaces are typically placed in office
environments so as not to block routes. The set Vep of
endpoints of a MAPD instance contains all initial locations
of agents, all pickup and delivery locations of tasks, and
perhaps additional designated parking locations. Let Vtsk

denote the set of all possible pickup and delivery locations
of tasks, called the task endpoints. The set Vep \ Vtsk is
called the set of non-task endpoints.

Definition 1. A MAPD instance is well-formed iff a) the
number of tasks is finite, b) there are no fewer non-task
endpoints than the number of agents, and c) for any two
endpoints, there exists a path between them that traverses
no other endpoints.

Well-formed MAPD instances (with at least one task)
have at least m+ 1 endpoints. Figure 2 shows three MAPD
instances. The MAPD instance on the left is well-formed.
The MAPD instance in the center is not well-formed because
there are two agents but only one non-task endpoint. The



e1 e2

e3 e4

e1 e2

e3 e4

e1

e2

e3 e4

Figure 2: The figure shows three MAPD instances.
Black cells are blocked. Blue and green circles are
the initial locations of agents. Red dashed circles
are task endpoints. Black dashed circles are non-
task endpoints.

MAPD instance on the right is not well-formed because,
for example, all paths between endpoints e2 and e3 traverse
endpoint e1. We design two decoupled MAPD algorithms
in the following that both solve all well-formed MAPD
instances (even though they might not execute all tasks in
case the number of tasks is infinite).

4. DECOUPLED MAPD ALGORITHMS
In this section, we present first a simple decoupled MAPD

algorithm, called Token Passing (TP), and then an improved
version, called Token Passing with Task Swaps (TPTS), that
is more effective. Decoupled MAPD algorithms are those
where each agent assigns itself to tasks and computes its
own collision-free paths given some global information.

4.1 Token Passing (TP)
Token Passing (TP) is based on an idea similar to

Cooperative A* [21], where agents plan their paths one after
the other. Its task set contains all tasks that have no agents
assigned to them. We describe a version of TP that uses
token passing and can thus easily be extended to a fully
distributed MAPD algorithm. The token is a synchronized
shared block of memory that contains the current paths of
all agents, task set, and agent assignments. All MAPD
algorithms in this paper, including TP, always assume that
an agent rests (that is, stays forever) in the last location of
its path in the token when it reaches the end of it. Token
passing has previously been used to develop COBRA [2],
which is a MAPF-like algorithm that does not take into
account that pickup or delivery locations of tasks can be
occupied by agents not executing them and can thus result
in deadlocks.

Algorithm 1 shows the pseudo-code of TP, where loc(ai)
denotes the current location of agent ai. Agent ai finds all
paths via A* searches in a state space whose states are pairs
of locations and timesteps. A directed edge exists from state
(l, t) to state (l′, t + 1) iff l = l′ or (l, l′) ∈ E. State (l, t)
is removed from the state space iff ai being in location l at
timestep t results in it colliding with other agents that move
along their paths in the token. Similarly, the edge from state
(l, t) to state (l′, t + 1) is removed from the state space iff
ai moving from location l to location l′ at timestep t results
in it colliding with other agents that move along their paths
in the token. Since cost-minimal paths need to be found
only to endpoints, the path costs from all locations to all
endpoints are computed in a preprocessing phase and then
used as h-values for all A* searches. TP works as follows:
The system initializes the token with the trivial paths where
all agents rest in their initial locations [Line 2]. In each

Algorithm 1: Token Passing (TP)

1 /* system executes now */;
2 Initialize token with the (trivial) path [loc(ai)] for each agent ai;
3 while true do
4 Add all new tasks, if any, to the task set T ;
5 while agent ai exists that requests token do
6 /* system sends token to ai - ai executes now */;

7 T ′ ← {τj ∈ T |no other path in token ends in sj or gj};
8 if T ′ 6= ∅ then
9 τ ← argminτj∈T ′ h(loc(ai), sj);

10 Assign ai to τ ;
11 Remove τ from T ;
12 Update ai’s path in token with Path1(ai, τ , token);

13 else if no task τj ∈ T exists with gj = loc(ai) then
14 Update ai’s path in token with the path [loc(ai)];

15 else
16 Update ai’s path in token with Path2(ai, token);

17 /* ai returns token to system - system executes now */;

18 All agents move along their paths in token for one timestep;
19 /* system advances to the next timestep */;

timestep, the system adds all new tasks, if any, to the task
set [Line 4]. Any agent that has reached the end of its path
in the token requests the token once per timestep. (It turns
out that one can easily drop the condition and let any free
agent request the token once per timestep for both decoupled
MAPD algorithms in this paper.) The system then sends
the token to each agent that requests it, one after the other
[Lines 5-6]. The agent with the token chooses a task from
the task set such that no path of other agents in the token
ends in the pickup or delivery location of the task [Line 7].

• If there is at least one such task, then the agent assigns
itself to the one with the smallest h-value from its
current location to the pickup location of the task and
removes this task from the task set [Lines 9-11]. The
agent then calls function Path1 to update its path in
the token with a cost-minimal path that a) moves from
its current location via the pickup location of the task
to the delivery location of the task and b) does not
collide with the paths of other agents stored in the
token [Line 12].

• If there is no such task, then the agent does not assign
itself to a task in the current timestep. If the agent
is not in the delivery location of a task in the task
set, then it updates its path in the token with the
trivial path where it rests in its current location [Line
14]. Otherwise, to avoid deadlocks, it calls function
Path2 to update its path in the token with a cost-
minimal path that a) moves from its current location to
an endpoint such that the delivery locations of all tasks
in the task set are different from the chosen endpoint
and no path of other agents in the token ends in the
chosen endpoint and b) does not collide with the paths
of other agents stored in the token [Line 16].

Finally, the agent returns the token to the system and
moves along its path in the token [Lines 17-18].

We now prove that the agent is always able to find a path
because it finds a path only when it is at an endpoint and
thus has to find only a path from an endpoint to an endpoint.

Property 1. Function Path1 returns a path successfully for
well-formed MAPD instances.



Proof. We construct a path from the current location loc(ai)
of agent ai (which is an endpoint) via the pickup location sj
of task τj to the delivery location gj of task τj that does not
collide with the paths of other agents stored in the token.
Due to Definition 1, there exists a path from loc(ai) via sj
to gj that traverses no other endpoints. All paths stored in
token end in endpoints that are different from loc(ai), sj ,
and gj . Thus, this path does not collide with the paths of
the other agents if ai moves along it after all other agents
have moved along their paths.

Property 2. Function Path2 returns a path successfully for
well-formed MAPD instances.

Proof. Due to Definition 1, there exist at least m non-task
endpoints and thus at least one non-task endpoint such that
no path of agents other than agent ai in the token ends in the
non-task endpoint. Of course, the delivery locations of all
tasks in the task set are different from the non-task endpoint
as well. We construct a path from the current location
loc(ai) of agent ai (which is an endpoint) to the chosen
endpoint that does not collide with the paths of other agents
stored in the token. Due to Definition 1, there exists a path
from loc(ai) to the chosen endpoint that traverses no other
endpoints. All paths stored in token end in endpoints that
are different from loc(ai) and the chosen endpoint. Thus,
this path does not collide with the paths of the other agents
if ai moves along it after all other agents have moved along
their paths.

Theorem 3. All well-formed MAPD instances are solvable,
and TP solves them.

Proof. We show that each task is eventually assigned some
agent and executed by it. Each agent requests the token
after a bounded number of timesteps, and no agent rests in
the delivery location of a task in the task set due to Line 16.
Thus, the condition on Line 8 becomes eventually satisfied
and some agent assigns itself to some task on Line 10. The
agent is then able to execute it due to Properties 1 and 2.

4.2 Token Passing with Task Swaps (TPTS)
TP is simple but can be made more effective. Token

Passing with Task Swaps (TPTS) is similar to TP except
that its task set now contains all unexecuted tasks, rather
than only all tasks that have no agents assigned. This means
that an agent with the token can assign itself not only to a
task that has no agent assigned but also to a task that is
already assigned another agent as long as that agent is still
moving to the pickup location of the task. This might be
beneficial when the former agent can move to the pickup
location of the task in fewer timesteps than the latter agent.
The latter agent is then no longer assigned to the task and
no longer needs to execute it. The former agent therefore
sends the token to the latter agent so that the latter agent
can try to assign itself to a new task.

Algorithm 2 shows the pseudo-code of TPTS. It uses the
same main loop [Lines 3-10] and the same functions Path1
and Path2 as TP. Agent ai with the token executes function
GetTask [Line 7], where it tries to assign itself to a task in
the task set T and find a path to an endpoint. The call of
function GetTask returns success (true) if agent ai finds a
path to an endpoint and failure (false) otherwise.

Algorithm 2: Token Passing with Task Swaps (TPTS)

1 /* system executes now */;
2 Initialize token with the (trivial) path [loc(ai)] for each agent ai;
3 while true do
4 Add all new tasks, if any, to the task set T ;
5 while agent ai exists that requests token do
6 /* system sends token to ai - ai executes now */;
7 GetTask(ai, token);
8 /* ai returns token to system - system executes now */;

9 All agents move along their paths in token for one timestep
and remove tasks from T when they start to execute them;

10 /* system advances to the next timestep */;

11 Function GetTask(ai, token)
12 T ′ ← {τj ∈ T |no other path in token ends in sj or gj};
13 while T ′ 6= ∅ do
14 τ ← argminτj∈T ′ h(loc(ai), sj);

15 Remove τ from T ′;
16 if no agent is assigned to τ then
17 Assign ai to τ ;
18 Update ai’s path in token with Path1(ai, τ , token);
19 return true;

20 else
21 Remember token, task set, and agent assignments;
22 ai′ ← agent that is assigned to τ ;
23 Unassign ai′ from τ and assign ai to τ ;
24 Remove ai′ ’s path from token;
25 Path1(ai, τ , token);
26 Compare when ai reaches sj on its path in token to

when ai′ reaches sj on its path in token’;
27 if ai reaches sj earlier than ai′ then
28 /* ai sends token to ai′ - ai′ executes now */;

29 success ← GetTask(a′i, token);
30 /* ai′ returns token to ai - ai executes now */;
31 if success then
32 return true;

33 Restore token, task set, and agent assignments;

34 if loc(ai) is not an endpoint then
35 Update ai’s path in token with Path2(ai, token);
36 if path was found then
37 return true;

38 else
39 if no task τj ∈ T exists with gj = loc(ai) then
40 Update ai’s path in token with the path [loc(ai)];

41 else
42 Update ai’s path in token with Path2(ai, token);

43 return true;

44 return false;

When executing function GetTask, agent ai considers all
tasks τ from the task set such that no path of other agents
in the token ends in the pickup or delivery location of the
task [Line 12], one after the other in order of increasing h-
values from its current location to the pickup locations of
the tasks [Lines 13-15]. If no agent is assigned to the task,
then (as in TP) agent ai assigns itself to the task, updates its
path in the token with function Path1 and returns success
[Lines 17-19]. Otherwise, agent ai unassigns the agent ai′
assigned to the task and assigns itself to the task [Line 23].
It removes the path of agent ai′ from the token and updates
its own path in the token with function Path1 [Lines 24-25].
If agent ai reaches the pickup location of the task with fewer
timesteps than agent ai′ , then it sends the token to agent ai′ ,
which executes function GetTask to try to assign itself to a
new task and eventually returns the token to agent ai [Lines
28-30]. If agent ai′ returns success, then agent ai returns
success as well [Lines 31-32]. In all other cases, agent ai
reverses all changes to the paths in the token, task set, and



agent assignments and then considers the next task τ [Lines
33].

Once agent ai has considered all tasks τ unsuccessfully,
then it does not assign itself to a task in the current timestep.
If it is not in an endpoint (which can happen only during
a call of Function GetTask on Line 29), then it updates
its path in the token with function Path2 to move to an
endpoint [Line 35]. The call can fail since agent ai is not at
an endpoint. Agent ai returns success or failure depending
on whether it was able to find a path [Lines 37 and 44].
Otherwise, (as in TP) if the agent is not in the delivery
location of a task in the task set, then it updates its path in
the token with the trivial path where it rests in its current
location [Line 40]. Otherwise, to avoid deadlocks, it updates
its path in the token with Function Path2 [Line 42]. In both
cases, it returns success [Line 43].

Finally, the agent returns the token to the system and
moves along its path in the token, removing the task that it
is assigned to (if any) from the task set once it reaches the
pickup location of the task (and thus starts to execute it)
[Lines 8-9].

Property 4. Function GetTask returns successfully for
well-formed MAPD instances when called on Line 7.

Proof. Function GetTask returns in finite time (and the
number of times an agent can unassign another agent from
any task is bounded during its execution) because a) the
number of tasks in the task set is finite; b) an agent can
unassign another agent from a task only if it reaches the
pickup location of the task with fewer timesteps than the
other agent; c) a task that has some agent assigned always
continues to have some agent assigned until it has been
executed; and d) the functions Path1 and Path2 return in
finite time. We show that an agent that executes function
GetTask on Line 7 finds a path to an endpoint. The agent is
always able to find paths with functions Path1 and Path 2
on all lines but Line 35 because it is then at an endpoint and
thus has to find a path from an endpoint to an endpoint. The
proofs are similar to those of Properties 1 and 2. However,
the agent is not guaranteed to find a path with function
Path2 on Line 35 because it is then not at an endpoint and
thus has to find a path from a non-endpoint to an endpoint.
Since the agent is at an endpoint during the call of function
GetTask on Line 7, it does not execute Line 35, finds a path,
and returns success.

Theorem 5. TPTS solves all well-formed MAPD instances.

Proof. The proof is similar to the one of Theorem 3 but uses
Property 4.

TPTS is often more effective than TP but Figure 3 shows
that this is not guaranteed. The figure shows a MAPD
instance with two agents a1 and a2 and two tasks τ1 and
τ2. The pickup location is the same as the delivery location
for each task. Assume that both a1 and a2 request the
token and the system sends it to a1 first. a1 assigns itself
to τ1. Figure 3 (left) shows the path of a1. The system
then sends the token to a2 next. In TP, a2 assigns itself to
τ2. Figure 3 (center) shows the paths of a1 and a2. The
resulting service time is two. In TPTS, however, a2 assigns
itself to τ1 because it can reach the pickup location of τ1
with fewer timesteps than a1. In return, a1 assigns itself

a1

a2τ1

τ2

a1

a2τ1

τ2

a1

a2τ1

τ2

Figure 3: The figure shows a MAPF instance. The
pickup location is the same as the delivery location
for both two tasks. Blue and green circles are the
initial locations of agents. Dashed circles are the
pickup/delivery locations.

to τ2. Figure 3 (right) shows the paths of a1 and a2. The
service time is three (the average of five and one).

5. CENTRALIZED ALGORITHM
In this section, we develop a centralized strawman MAPD

algorithm, CENTRAL, to evaluate how effective our decou-
pled MAPD algorithms are. We want CENTRAL to be
reasonably efficient and effective but do not require that it
is optimally effective or even solves all well-formed MAPD
instances. The agents of a centralized MAPD algorithm can
communicate more than the ones of TPTS, and the ones
of TPTS communicate more than the ones of TP. Thus,
we expect the MAPD algorithms to be in increasing order
of effectiveness: TP, TPTS, and CENTRAL. For the same
reason, we expect the MAPD algorithms to be in increasing
order of efficiency: CENTRAL, TPTS, and TP.

In each timestep, CENTRAL first assigns endpoints to
all agents and then solves the resulting MAPF instance to
plan paths for all agents from their current locations to their
assigned endpoints simultaneously. Finally, all agents move
along their paths for one timestep and the procedure repeats.
Agent Assignment First, CENTRAL considers each agent,
one after the other, that rests at the pickup location of
an unexecuted task. If the delivery location of the task is
currently not assigned to other agents, CENTRAL assigns
the agent to the corresponding unexecuted task (if it is
not assigned to the task already) and assigns the delivery
location of the task to the agent. The agent then starts
to execute the task and thus becomes occupied. Then,
CENTRAL assigns each free agent either the pickup location
of an unexecuted task or some other endpoint as parking
location. To make the resulting MAPF problem solvable, the
endpoints assigned to all agents must be pairwise different.
Agents are assigned pickup locations of unexecuted tasks
in order to execute the tasks afterward. Thus, when
CENTRAL assigns pickup locations of unexecuted tasks
to agents, we want the delivery locations of these tasks
to be different from the endpoints assigned to all agents
(except for their own pickup locations) and from each other.
CENTRAL achieves these constraints as follows:

First, CENTRAL greedily constructs a set of possible
endpoints X for the free agents as follows: CENTRAL
greedily constructs a subset T ′ of unexecuted tasks, starting
with the empty set, by checking for each unexecuted task,
one after the other, whether its pickup and delivery locations
are different from the delivery locations of all executed tasks



and the pickup and delivery locations of all unexecuted tasks
already added to T ′ and, if so, adds it to T ′. CENTRAL
then sets X to the pickup locations of all tasks in T ′. If the
number of free agents is larger than |X|, then CENTRAL
needs to add endpoints to X as parking locations for some
free agents. Since it is not known a priori which free
agents these parking locations will be assigned to, there
should be one good parking location available for each free
agent, which is possible due to Definition 1. CENTRAL
thus greedily determines a good parking location for each
free agent ai, one after the other, as the endpoint e that
minimizes the cost c(ai, e) (“is closest to the agent”) among
all endpoints that are different from the delivery locations
of all executed tasks, the pickup and delivery locations of all
tasks in T ′, and the parking locations already determined,
where c(ai, e) is the cost of a cost-minimal path that moves
from the current location of free agent ai to endpoint e. It
then adds this endpoint to X.

Second, CENTRAL assigns each free agent an endpoint in
X to satisfy all constraints. It uses the Hungarian Method
[11] for this purpose with the modified costs c′(ai, e) for
each pair of free agent ai and endpoint e, where c is the
number of free agents, C is a sufficiently large constant (for
example, the maximum over all costs c(ai, e) plus one), and
c′(ai, e) = c ·C · c(ai, e) if e is a pickup location of a task in
T ′ and c′(ai, e) = c · C2 + c(ai, e) if e is a parking location.
The modified costs have two desirable properties: a) The
modified cost of assigning a pickup location to a free agent is
always smaller than the modified cost of assigning a parking
location to the same agent. Therefore, assigning pickup
locations is more important than assigning rest locations.
b) Assigning a closer pickup location to a single free agent
that is assigned a pickup location reduces the total modified
cost more than assigning closer parking locations to all free
agents that are assigned rest locations. Therefore, assigning
closer pickup locations is more important than assigning
closer parking locations.
Path Planning CENTRAL uses the optimally effective
MAPF algorithm Conflict-Based Search [19] to plan collision-
free paths for all agents from their current locations to their
assigned endpoints simultaneously. These paths minimize
the sum of the number of timesteps required by all agents
to reach their assigned endpoints and stop moving. We
noticed that CENTRAL becomes significantly more efficient
if it plans paths in two stages: First, it plans paths for
all agents that become occupied in the current timestep
to their assigned endpoints (using the approach described
above but treating the most recently calculated paths of
all other agents as spatio-temporal obstacles. Then, it
plans paths for all free agents to their assigned endpoints
(again using the approach described above but treating
the most recently calculated paths of all other agents as
spatio-temporal obstacles). In general, two smaller MAPF
instances can be solved much faster than their union due
to the NP-hardness of the problem. Also, CENTRAL can
then determine a more informed cost c(ai, e) as the cost of a
cost-minimal path that a) moves from the current location
of agent ai to endpoint e and b) does not collide with the
paths of the occupied agents (as described for TP).

Property 6. Path planning for all agents that became
occupied in the current timestep returns paths successfully
for well-formed MAPD instances.

Figure 4: The figure shows a 21 × 35 4-neighbor
grid that represents the layout of a small simulated
warehouse environment with 50 agents. Black cells
are blocked. Gray cells are task endpoints. Colored
circles are the initial locations of agents.

Proof. We construct paths for all agents that became occu-
pied in the current timestep from their current locations to
their assigned endpoints that do not collide with the most
recently calculated paths of all other agents: Assume that
all other agents move along their most recently calculated
paths. When all of them have reached the ends of their
paths, move all agents that became occupied one after the
other to their assigned endpoints, which is possible due to
Definition 1 since their current locations are endpoints and
their assigned endpoints are different from the endpoints
that all other agents now occupy.

Property 7. Path planning for all free agents returns paths
successfully for well-formed MAPD instances.

Proof. We construct paths for all free agents from their
current locations to their assigned endpoints that do not
collide with the most recently calculated paths of all other
agents: Assume that all agents move along their most
recently calculated paths. When all of them have reached
the ends of their paths, move all free agents one after the
other to their assigned endpoints, which is possible due to
Definition 1 since the locations that they now occupy are
endpoints. Directly before an agent moves to its assigned
endpoint, check whether this endpoint is blocked by another
agent. If so, move this other agent to an unoccupied
endpoint first. Such an endpoint exists since there are at
least m+ 1 endpoints for m agents due to Definition 1.

6. EXPERIMENTAL EVALUATION
In this section, we describe our experimental results on

a 2.50 GHz Intel Core i5-2450M laptop with 6 GB RAM.
We ran TP, TPTS, and CENTRAL in the small simulated
warehouse environment shown in Figure 4. We generated
a sequence of 500 delivery tasks by randomly choosing
their pickup and delivery locations from all task endpoints.
The initial locations of the agents are the only non-task
endpoints. We used 6 different task frequencies (numbers
of tasks that are added (in order) from the sequence to the
task set in each timestep): 0.2 (one task every 5 timesteps),
0.5, 1, 2, 5, and 10. For each task frequency, we used 5
different numbers of agents: 10, 20, 30, 40, and 50. Table 1
reports the makespans, the service times, the runtimes per
timestep (in ms), the ratios of the service times of TPTS
and TP, and the ratios of the service times of CENTRAL



Table 1: The table shows the experimental results
for TP, TPTS, and CENTRAL in the small simu-
lated warehouse environment.

TP TPTS CENTRAL
task fre-
quency agents make-

span
service
time

run-
time

make-
span

service
time

run-
time ratio make-

span
service
time

run-
time ratio

0.2

10 2,532 38.54 0.13 2,532 29.33 1.86 0.76 2,513 27.78 92.69 0.72
20 2,540 39.77 0.26 2,520 25.36 9.82 0.64 2,513 24.37 493.83 0.61
30 2,546 38.71 0.25 2,527 23.88 21.57 0.62 2,513 23.10 1,225.62 0.60
40 2,540 38.88 0.24 2,524 23.50 27.49 0.60 2,511 22.48 2,246.66 0.58
50 2,540 40.03 0.32 2,524 23.11 47.33 0.58 2,511 21.82 3,426.01 0.54

0.5

10 1,309 132.79 0.24 1,274 131.15 0.33 0.99 1,242 116.37 113.60 0.88
20 1,094 42.69 1.16 1,038 30.74 12.39 0.72 1,031 28.05 309.01 0.66
30 1,069 43.97 1.51 1,035 27.14 34.04 0.62 1,034 25.36 916.37 0.58
40 1,090 43.01 0.70 1,038 25.98 19.85 0.60 1,034 24.26 1,697.99 0.56
50 1,083 43.66 1.36 1,036 25.22 71.48 0.58 1,031 23.83 2,920.72 0.55

1

10 1,198 311.78 0.20 1,182 301.03 0.37 0.97 1,143 285.67 141.32 0.92
20 757 95.98 1.03 706 88.25 2.80 0.92 673 74.79 279.52 0.78
30 607 53.80 2.81 561 42.84 8.45 0.80 557 30.26 446.38 0.56
40 624 48.80 2.14 563 31.99 39.54 0.66 556 28.27 1,159.76 0.58
50 597 49.14 3.76 554 30.27 128.13 0.62 552 26.55 2,197.82 0.54

2

10 1,167 407.62 0.19 1,168 407.24 0.37 1.00 1,121 386.81 143.30 0.95
20 683 190.76 0.96 667 181.03 2.38 0.95 628 163.79 406.88 0.86
30 529 114.39 2.31 496 102.69 8.39 0.90 466 88.45 589.13 0.77
40 464 95.32 3.43 425 72.59 7.32 0.76 385 58.12 837.21 0.61
50 432 75.63 6.28 383 58.06 126.47 0.77 320 39.25 1,200.10 0.52

5

10 1,162 473.78 0.20 1,165 473.18 0.41 1.00 1,105 452.50 126.19 0.96
20 655 247.08 1.02 645 238.02 1.68 0.96 594 224.70 350.13 0.91
30 478 170.78 2.22 474 167.66 8.58 0.98 426 147.03 595.04 0.86
40 418 155.33 4.15 396 131.36 12.31 0.85 334 108.39 864.56 0.70
50 395 124.59 5.92 343 104.86 59.64 0.84 295 86.22 1,388.30 0.69

10

10 1,163 495.93 0.22 1,172 505.26 0.40 1.02 1,090 472.56 125.55 0.95
20 643 275.24 1.09 645 258.36 1.87 0.94 607 248.74 379.53 0.90
30 526 192.01 1.98 491 198.30 10.82 1.03 414 164.41 593.89 0.86
40 407 154.63 1.65 389 152.49 12.62 0.99 341 128.29 899.81 0.83
50 333 131.42 5.62 319 126.96 25.32 0.97 277 105.11 1,376.51 0.80

and TP. The measures for a task frequency of 10 tasks per
timestep are reasonably representative of the case where all
tasks are added in the beginning of the operation since the
tasks are added over the first 50 timesteps only.
Makespans and Service Times The MAPD algorithms
in increasing order of their makespans and service times
tend to be: CENTRAL, TPTS, and TP. For example, the
service time of TPTS (and CENTRAL) is up to about 42
percent (and 48 percent, respectively) smaller than the one
of TP for some experimental runs. The makespans tend to
be large for low task frequencies and small for high task
frequencies because the number of tasks is constant and
thus more time steps are needed to add all tasks for low
task frequencies. On the other hand, the service times
tend to be small for low task frequencies and high for
high task frequencies because the agents tend to be able
to attend to tasks fast if the number of tasks in the system
is small. The makespans and service times tend to be large
for small numbers of agents and small for large numbers
of agents because the agents tend to be able to attend
to tasks fast if the number of agents is large (although
congestion increases). The makespans and service times for
a task frequency of 0.2 tasks per timestep are about the
same for all numbers of agents because 10 agents already
attend to all tasks as fast as the MAPD algorithms allow.
The makespans are similar for all MAPD algorithms and
all numbers of agents for the task frequency of 0.2 tasks
per timestep because 10 agents already execute tasks faster
than they are added. The makespans then depend largely
on how fast the agents execute the last few tasks. On the
other hand, the makespans of MAPD algorithms increase
substantially when tasks pile up because the agents execute
them more slowly than they are added. This allows us to
estimate the smallest number of agents needed for a lifelong
operation as a function of the task frequency and MAPD
algorithm. For example, the makespan of TPTS increases
substantially when the number of agents are reduced from
20 to 10 for a task frequency of 1 task per timestep. Thus,
one needs between about 10 and 20 agents for a lifelong
operation with TPTS.

Runtimes per Timestep The MAPF algorithms in in-
creasing order of their runtimes per timestep tend to be:
TP, TPTS, and CENTRAL. For example, the runtime of
TPTS (and CENTRAL) is two orders of magnitude larger
than the runtime of TP (and TPTS, respectively) for some
experimental runs. The runtimes of TP are less than
10 milliseconds, the runtimes of TPTS are less than 200
milliseconds, and the runtimes of CENTRAL are less than
4,000 milliseconds in all experimental runs. We consider
runtimes below one second to allow for real-time lifelong
operation. The runtimes tend not to be correlated with the
task frequencies. They tend to be small for small numbers
of agents and large for large numbers of agents because all
agents need to perform computations, which are not run in
parallel in our experiments.
Number of Executed Tasks The service times vary over
time since only very few tasks are available in the first and
last time steps. The steady state is in between these two
extremes. Figure 5 therefore visualizes the number of tasks
added and executed by 50 agents during the 100-timestep
window [t − 99, t] for all MAPD algorithms as a function
of the timestep t. For low task frequencies, the numbers of
tasks added match the numbers of tasks executed closely for
all MAPD algorithms. Differences between them arise for
higher task frequencies. For example, for the task frequency
of 2 tasks per timestep, the number of tasks executed by
CENTRAL increases faster and reaches a higher level than
the numbers of tasks executed by TP and TPTS. The 100-
timestep window [150, 249] at time step t = 249 is a close
approximation of the steady state since all tasks are added
at a steady rate during the first 250 timesteps. CENTRAL
executes more tasks during this 100-timestep window than
TP and TPTS and thus has a smaller service time. However,
the numbers of tasks executed are smaller for all MAPD
algorithms than the number of tasks added, and tasks thus
pile up for all of them in the steady state.
Scalability To evaluate how the MAPD algorithms scale in
the size of the environment, we ran TP, TPTS, and CEN-
TRAL in the large simulated warehouse environment shown
in Figure 6. We generated a sequence of 1,000 delivery tasks
by randomly choosing their pickup and delivery locations
from all task endpoints. The initial locations of the agents
are the only non-task endpoints. We used a task frequency of
50 tasks per timestep and 100, 200, 300, 400, and 500 agents.
TPTS and CENTRAL did not allow for real-time lifelong
operation for large numbers of agents. Figure 7 therefore
reports, for TP only, the service times and the runtimes
per timestep (in ms) in the table as well as the numbers of
tasks added and executed during a 100-timestep window for
different numbers of agents in the charts. The runtime of
TP is smaller than 500 milliseconds for 200 agents, allowing
for real-time lifelong operation.

7. CONCLUSIONS
In this paper, we studied a lifelong version of the multi-

agent path finding (MAPF) problem, called the multi-agent
pickup and delivery (MAPD) problem, to capture important
characteristics of many real-world domains. In the MAPD
problem, agents have to attend to a stream of delivery tasks
in an online setting by first moving to the pickup locations
of the tasks and then to the delivery locations of the tasks
while avoiding collisions with other agents. We presented
two decoupled MAPD algorithms, Token Passing (TP) and



0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

TP TPTS CENTRAL tasks added

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

TP TPTS CENTRAL tasks added

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

TP TPTS CENTRAL tasks added

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500 550

TP TPTS CENTRAL tasks added

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

TP TPTS CENTRAL tasks added

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 500

TP TPTS CENTRAL tasks added

Figure 5: The charts show the number of tasks added (grey) and executed by 50 agents during the 100-
timestep window [t− 99, t] for TP, TPTS, and CENTRAL as a function of the timestep t for task frequencies
0.2, 0.5, 1, 2, 5, and 10 (from left to right and top to bottom)

Figure 6: The figure shows a 81 × 81 4-neighbor
grid that represents the layout of a large simulated
warehouse environment with 500 agents.

Token Passing with Task Swaps (TPTS). Theoretically,
we showed that both MAPD algorithms solve all well-
formed MAPD instances. Experimentally, we compared
them against the centralized strawman MAPD algorithm
CENTRAL without this guarantee in a simulated warehouse
system. The MAPD algorithms in increasing order of
their makespans and service times tend to be: CENTRAL,
TPTS, and TP. The MAPF algorithms in increasing order
of their runtimes per timestep tend to be: TP, TPTS, and
CENTRAL. TP can easily be extended to a fully distributed
MAPD algorithm and is the best choice when real-time
computation is of primary concern since it remains efficient
for MAPD instances with hundreds of agents and tasks.
TPTS requires limited communication among agents and
balances well between TP and CENTRAL.

REFERENCES
[1] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin,

O. Betzalel, and S. E. Shimony. ICBS: Improved
conflict-based search algorithm for multi-agent pathfinding.

agents 100 200 300 400 500
service time 463.25 330.19 301.97 289.08 284.24
runtime 90.83 538.22 1,854.44 3,881.11 6,121.06

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100

100

200

300

400

500

tasks added

Figure 7: The figure shows the experimental results
for TP in the large simulated warehouse environ-
ment.

In International Joint Conference on Artificial Intelligence,
pages 740–746, 2015.

[2] M. Cáp, J. Vokŕınek, and A. Kleiner. Complete
decentralized method for on-line multi-robot trajectory
planning in well-formed infrastructures. In International
Conference on Automated Planning and Scheduling, pages
324–332, 2015.

[3] L. Cohen, T. Uras, T. K. S. Kumar, H. Xu, N. Ayanian,
and S. Koenig. Improved solvers for bounded-suboptimal
multi-agent path finding. In International Joint Conference
on Artificial Intelligence, pages 3067–3074, 2016.

[4] B. de Wilde, A. W. ter Mors, and C. Witteveen. Push and
rotate: Cooperative multi-agent path planning. In
International Conference on Autonomous Agents and
Multi-Agent Systems, pages 87–94, 2013.

[5] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller. A
general formal framework for pathfinding problems with
multiple agents. In AAAI Conference on Artificial
Intelligence, pages 290–296, 2013.

[6] M. A. Erdmann and T. Lozano-Pérez. On multiple moving
objects. Algorithmica, 2:477–521, 1987.

[7] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. R.
Sturtevant, R. C. Holte, and J. Schaeffer. Enhanced Partial
Expansion A*. Journal of Artificial Intelligence Research,
50:141–187, 2014.



[8] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu,
N. Ayanian, and S. Koenig. Multi-agent path finding with
kinematic constraints. In International Conference on
Automated Planning and Scheduling, pages 477–485, 2016.

[9] W. Hönig, T. K. S. Kumar, H. Ma, N. Ayanian, and
S. Koenig. Formation change for robot groups in occluded
environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4836–4842, 2016.

[10] M. Khorshid, R. Holte, and N. Sturtevant. A
polynomial-time algorithm for non-optimal multi-agent
pathfinding. In Annual Symposium on Combinatorial
Search, 2011.

[11] H. W. Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97, 1955.

[12] R. Luna and K. E. Bekris. Push and Swap: Fast
cooperative path-finding with completeness guarantees. In
International Joint Conference on Artificial Intelligence,
pages 294–300, 2011.

[13] H. Ma and S. Koenig. Optimal target assignment and path
finding for teams of agents. In International Conference on
Autonomous Agents and Multiagent Systems, pages
1144–1152, 2016.

[14] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig,
T. K. S. Kumar, T. Uras, H. Xu, C. Tovey, and G. Sharon.
Overview: Generalizations of multi-agent path finding to
real-world scenarios. In IJCAI-16 Workshop on
Multi-Agent Path Finding, 2016.

[15] H. Ma, T. K. S. Kumar, and S. Koenig. Multi-agent path
finding with delay probabilities. In AAAI Conference on
Artificial Intelligence, 2017.

[16] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and
S. Koenig. Multi-agent path finding with payload transfers
and the package-exchange robot-routing problem. In AAAI
Conference on Artificial Intelligence, pages 3166–3173,
2016.

[17] P. MacAlpine, E. Price, and P. Stone. SCRAM: Scalable
collision-avoiding role assignment with minimal-makespan
for formational positioning. In AAAI Conference on
Artificial Intelligence, pages 2096–2102, 2015.

[18] R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma,
S. Kumar, and S. Koenig. Planning, scheduling and
monitoring for airport surface operations. In AAAI-16
Workshop on Planning for Hybrid Systems, 2016.

[19] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219:40–66, 2015.

[20] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The
increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195:470–495, 2013.

[21] D. Silver. Cooperative pathfinding. In Artificial Intelligence
and Interactive Digital Entertainment, pages 117–122,
2005.

[22] T. S. Standley and R. E. Korf. Complete algorithms for
cooperative pathfinding problems. In International Joint
Conference on Artificial Intelligence, pages 668–673, 2011.

[23] N. R. Sturtevant and M. Buro. Improving collaborative
pathfinding using map abstraction. In Artificial Intelligence
and Interactive Digital Entertainment, pages 80–85, 2006.

[24] P. Surynek. A novel approach to path planning for multiple
robots in bi-connected graphs. In IEEE International
Conference on Robotics and Automation, pages 3613–3619,
2009.

[25] P. Surynek. Reduced time-expansion graphs and goal
decomposition for solving cooperative path finding
sub-optimally. In International Joint Conference on
Artificial Intelligence, pages 1916–1922, 2015.

[26] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The
generation of bidding rules for auction-based robot
coordination. In F. S. L. Parker and A. Schultz, editors,
Multi-Robot Systems. From Swarms to Intelligent
Automata, volume 3, chapter 1, pages 3–14. Springer, 2005.

[27] J. P. van den Berg, J. Snape, S. J. Guy, and D. Manocha.
Reciprocal collision avoidance with acceleration-velocity
obstacles. In IEEE International Conference on Robotics
and Automation, pages 3475–3482, 2011.

[28] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. CoBots:
Robust symbiotic autonomous mobile service robots. In
International Joint Conference on Artificial Intelligence,
pages 4423–4429, 2015.

[29] G. Wagner. Subdimensional Expansion: A Framework for
Computationally Tractable Multirobot Path Planning. PhD
thesis, Carnegie Mellon University, 2015.

[30] K. Wang and A. Botea. MAPP: a scalable multi-agent path
planning algorithm with tractability and completeness
guarantees. Journal of Artificial Intelligence Research,
42:55–90, 2011.

[31] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating
hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine, 29(1):9–20, 2008.

[32] J. Yu and S. M. LaValle. Planning optimal paths for
multiple robots on graphs. In IEEE International
Conference on Robotics and Automation, pages 3612–3617,
2013.

[33] X. Zheng and S. Koenig. K-swaps: Cooperative negotiation
for solving task-allocation problems. In International Joint
Conference on Artifical Intelligence, pages 373–378, 2009.


